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Abstract. Based on studies and experiments on the loss term of SVMs,
we argue that 1-norm measurement is better than 2-norm measurement
for outlier resistance. Thus, we modify the previous 2-norm soft margin
smooth support vector machine (SSVM3) to propose a new l-norm soft
margin smooth support vector machine (SSVM;). Both SSVMs can be
solved in primal form without a sophisticated optimization solver. We
also propose a heuristic method for outlier filtering which costs little in
training process and improves the ability of outlier resistance a lot. The
experimental results show that SSVM; with outlier filtering heuristic
performs well not only on the clean, but also the polluted synthetic and
benchmark UCI datasets.

Keywords: classification, outlier resistance, robustness, smooth tech-
nique, support vector machine.

1 Introduction

Support vector machines (SVMs) have been proven to be one of the promising
learning algorithms for classification [6]. The standard SVMs have loss + penalty
terms measured by 1-norm or 2-norm measurements. The “loss” part measures
the quality of model fitting and the “penalty” part controls the model complexity.
In this study, our purpose is to improve original 2-norm soft margin smooth
support vector machine (SSVMy) [9] with robust strategies. First, we find out
that the measurement of the 2-norm loss term will amplify the effect of outliers
much more than the measurement of the 1-norm loss term in training process. We
argue that the 1-norm loss term is better than the 2-norm loss term for outlier
resistance. From this robustness point of view, we modify the previous framework
in SSVM;, to a new 1-norm soft margin smooth support vector machine (SSVMjy).
We show that SSVM; can remedy the drawback of SSVMs for outlier effect and
improve outlier resistance as well.

Although SVMs have the advantage of being robust for outlier effect [15],
there are still some violent cases that will mislead SVM classifiers to lose their
generalization ability for prediction. For example, the classification results will
be very dissimilar if the difference between the total sum of the hinge losses and



the total sum of the misclassification losses is too large. Hence secondly in this
study, based on the design of Newton-Armijo iterations in SSVMs, we propose a
heuristic method to filter outliers among Newton-Armijo iterations of the train-
ing process and make SSVMs be more robust while encountering datasets with
extreme outliers. Our method differs with other methods by truncating hinge
loss [10]. It can directly and effectively drop the effect of the outliers.

The rest of the paper is organized as follows: In Section 2, we show how
outliers have a great impact on SVMs. Following the idea of SSVMs, we propose
the SSVM; in Section 3. In Section 4, we describe how to design the heuristic
method for outlier filtering. The numerical results and comparisons are presented
in Section 5. Finally, we conclude the paper in Section 6.

2 Review on Soft Margin SVMs and Outlier Effect

We first introduce the standard 1-norm soft margin SVM (SVM;) and the stan-
dard 2-norm soft margin SVM (SVMs). Then, we argue that the SVM; is more
robust than the SVM, in outlier resistance by observing their primal and Wolfe
dual formulations.

Consider the binary problem of classifying m points in the n-dimensional real
space R"™, represented by an m x n matrix A. According to membership of each
point A; € R™*! in the classes +1 or -1, D is an m x m diagonal matrix with
ones or minus ones along its diagonal. Sometimes, we will take the notation y;
as the class label of A; and the notation z; as A for convenience. The standard
1-norm soft margin and 2-norm soft margin support vector machines are given
by the following optimization problems.
1-norm soft margin SVM (SVM; ):
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subject to: D(Aw +1b) + & > 1 (1)
3 > 0.

2-norm soft margin SVM (SVM,):
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subject to: D(Aw+1b)+ & > 1 (2)
3 > 0.

The SVMs try to minimize not only the penalty term but also the loss term
in the object function. In the SVMy (2), the 2-norm loss term will amplify the
outlier effect much more as compared to the 1-norm loss term in the SVM; (1).
The convex quadratic programs [3] of (1) and (2) can also be transformed into
the following Wolfe dual problems by the Lagrangian theory [6].



The dual formulation of SVM;:

min %aTDAATDa -1Ta
aER™
subject to: 1T Da =0, (3)

0<a;<C,i=12,...m

The dual formulation of SVMs:

min 1o D(AAT + é)Da —1Ta
a€R™
subject to: 1T Do = 0, (4)

0<a i=12 .. m.

In the dual form of SVM, (4), the constraint, 0 < «;, is a big cause of the
outlier effect, where a; = C¢; (by the optimality conditions). It means that the
upper bound of «; depending on the variable & is unlimited, and the normal
vector, w = AT Da, will be affected by the unrestricted o consecutively. In the
SVM; (3), however, the maximum value of «a; could not exceed the constant
value C' due to the constraint, 0 < a; < C. According to these observations, we
argue that the SVM; is more robust than the SVMs in outlier resistance. Hence,
we develop SSVM 7, which will be introduced in next section.

3 1-Norm Soft Margin Smooth SVM (SSVM,)

Similar to the framework of SSVMjy [9], the classification problem (1) is refor-
mulated as follows:
- 1 2, 12
i 313 +09) + Clel
subject to:  D(Aw+1b)+& >1 (5)
£ >0.

In the solution of problem (5), £ is given by
€= (1- D(Aw+10));, (6)

where ()4 is defined by maz {-,0}. Namely, if 1 — D;;(A;jw +b) < 0, then
& = 0. Thus, this £ in the objective function of problem (5) is replaced by
(1 — D(Aw + 1b))+ so that problem (5) can be converted into an unconstrained
optimization problem as follows:
omin 3wl +02)+ C (1 = DAw + 1) . )
The problem is a strongly convex minimization problem without any con-
straint. Thus, problem (7) has a unique solution. Obviously, the objective func-
tion in problem (7) is not twice differentiable, so the Newton method can not
be applied to solve this problem. Therefore, SSVMs employs a smoothing func-
tion [5] to replace the original plus function. The smoothing function is given by



p(z, ), the integral of the sigmoid function

is,

H_e%m of neural networks [11], that

p(x,0) =z + L log(1+ e ") for a > 0, (8)

where « is a smoothing parameter to adjust the degree of approximation. Note
that if the value of « increases, the p(x, «) will approximate the plus function
more accurately. Next, the p(x, ) is taken into problem (7) to replace the plus
function as follows:
: 1 2, g2 _
omin S (wl3 +2)+ € lp(1 = D(4w + 10),a)], ©
By taking the advantage of the twice differentiability of the objective func-
tions on problem (9), a prescribed quadratically convergent Newton-Armijo algo-
rithm [3] can be introduced to solve this problem. Hence, the smoothing problem
can be solved without a sophisticated optimization solver.
Moreover, we can obtain the unconstrained nonlinear smooth SVM; by ap-
plying the kernel trick [12] on problem (9) as follows:
: 1 2 p2 _ T
Lmin Sl 4+ 8) 4 O a1 = DK A AT+ )0, (1)
The nonlinear separating surface is defined by the optimal solution w and b of
(10):
K(A,z)u+b=0. (11)

The computational complexity for solving (10) is O((m+1)?). To conquer the
computation difficulty caused by a big full kernel matrix K (A, AT), we introduce
the reduced kernel technique [8] to replace it by K (A, AT). The key idea of
the reduced kernel technique is to randomly select a small portion of data and
to generate a thin rectangular kernel matrix to replace the full kernel matrix.
The reduced kernel method constructs a compressed model and cuts down the
computational cost from O(m3) to O(m?). It has been shown that the solution
of reduced kernel matrix approximates the solution of full kernel matrix well.

4 A Heuristic Method for Outlier Filtering

So far, SSVM; has been developed for better outlier resistance, but there are
some violent cases that are still easy to mislead either 1-norm soft margin SVMs
or 2-norm soft margin SVMs to lose their generalization ability. We present a
violent case in Fig. 1. It shows that no matter the 1-norm soft margin SVMs
(SSVM; and LIBSVM [4]) or the 2-norm soft margin SVM (SSVMy,), all of them
cannot separate the major parts of positive and negative examples. Why all of
the SVMs lose their generalization ability in this case is that they pay too much
effort to minimize the loss term and sacrifice for minimizing the penalty term
because of these extreme outliers.

To rescue the SVMs from such the violent case, we prescribe a heuristic
method to filter out the extreme outliers, which makes SVMs be more balanced
to minimize both penalty term and loss term at the same time. Our strategy is
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Fig. 1. (Synthetic Dataset: a normal distribution, mean = 2 and -2, the standard
deviation = 1) The outlier ratio is 0.025 (outliers are on the upper-right and lower-left
corners in (a)). For the outliers, the outlier difference from the mean of their groups is set
to be 75 times the standard deviation. All classifiers are seriously affected by these outliers.

to continue removing the training input with a large &; in each Newton iteration
and make sure that the removed number is still smaller than the outlier ratio,
which is given by the intuition of users or data collectors. In implementation,
the removal is arranged to distribute fairly in several iterations according to the
setting outlier ratio.

Note that the outlier filtering process is also embedded in SSVMj to compare
with SSVM; in experiments. We denote SSVM;-, and SSVMs., to represent
the SSVM; and SSVM, with filtering strategy. In order to see the power of
the heuristic filtering method, we test SSVM;-, and SSVMo_, on the identical
synthetic dataset in Fig.1 again. Fig. 2 shows that SSVM;_, and SSVM,_,, indeed
remedy the previous classification results of SSVM; and SSVM, in Fig. 1, and
they are superior to LIBSVM without outlier filtering mechanism.

5 Numerical Results

All codes of SSVMs are written in Matlab [14]. In experiments, we test the
SSVM,, SSVM;, LIBSVM [4], SSVMa-, and SSVM;-, on ten publicly available
binary class datasets from the UCI Machine Learning Repository [2] and CBCL
datasets: Wisconsin Prognostic Breast Cancer Database [13], Ionosphere,
BUPA Liver,Pima Indians, Cleveland Heart Problem, WDBC, Image, Singleton,
Waveform and CBCL Face Database [1]. We perform 10-fold cross-validation on
each dataset in order to evaluate how well each SVM generalizes to future data.
We train all of the classifiers by Gaussian (RBF) kernel, which is defined
as K(A, AT)ij = e‘”“Ai_AJ”%, 1,7 = 1,2,3...m. To build up a satisfied SVM
model, we need to search a good pair of Gaussian kernel width parameter ~ and
reqularization parameter C. A well developed model selection method is nested
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Fig. 2. SSVM;-, and SSVMa-, have successfully remedied the classification results of
SSVM; and SSVMy in Fig. 1. LIBSVM is still affected by the outliers a lot.

uniform designs (UDs) [7], which is applied in experiments. In [7], the results
by using the nested-UDs are usually good enough with much less computational
cost as compared to the grid search for parameters tuning. For the large-scale
datasets (CBCL Face Database, Image, Singleton and Waveform), we apply the
reduced kernel technique (1% from the columns of the full kernel) to the SSVMs
except for LIBSVM.

Since the specificity and the sensitivity of the tests are not unusual for all the
methods, on the limit of space we just report the average training and testing
correctness of 10-fold cross-validation in Table 1. In the part (b) of Table 1, we
try to pollute the datasets by replacing 10% outlier training samples into each
dataset. The experiments show that SSVM;_, performs very well in dealing with
the problems with outliers.

6 Conclusions

In this paper, we argue that 1-norm soft margin SVMs have better outlier resis-
tance than 2-norm soft margin SVMs, so we develop SSVM; by modifying the
previous framework in SSVMs. To strengthen the robustness of SSVM; in some
violent cases, we also propose the heuristic method for outlier filtering. From
experiments, we see that the 1-norm soft margin SVMs do have better robust-
ness, and the heuristic filtering method, which costs little in training process,
improves the outlier resistance a lot.
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Table 1. Numerical comparisons of nonlinear SVMs on the original and polluted data
problems.

10-fold training correctness, %
10-fold testing correctness, %
Method
Dataset size (reduced ratio)
mxn SSVM, SSVM; LIBSVM SSVMay-, SSVM1-,
WPBC 88.69 86.02 85.91 78.13 82.10
194 x 34 81.67 80.00 80.00 79.44 79.44
Tonosphere 96.78 99.43 99.43 96.66 98.45
351 x 34 96.18 96.47  96.47 95.59 95.88
BUPA 76.21 76.4 75.88  76.50 76.3
345 x 6 74.41  75.29 74.71  75.59 74.71
Pima Indians 77.95 77.62 77.88  82.34 77.76
768 x 8 78.82 78.82 78.42 78.29 78.55
Cleveland 86.67 85.54 84.53 84.34 85.47
296 x 13 84.14 85.17 84.48 84.14 84.48
WDBC 99.14 99.24 99.06 96.78 98.81
569 x 30 98.21 98.21 98.21 96.96 98.04
Face (r=0.01) 98.76 98.82 98.68 97.90 98.28
6977 x 361 98.29 98.51 98.38 97.84 98.05
Image (r=0.01) 92.39 91.52 91.67 90.49 90.54
2310 x 18 92.16 91.17 91.26 89.91 90.04
Singleton (r=0.01) 79.58  80.56 81.32  81.98 81.41
3175 x 60 79.11 79.68  81.30 81.17 79.87
Waveform (r=0.01) 91.52 91.86 91.47 91.94 92.34
5000 x 21 91.08 91.38 91.04 91.28 91.00

(a) The results on original data problems and the best values are empha-
sized in boldface. The outlier ratio parameters of SSVMo_, and SSVM-,
are set to 5%.

10-fold training correctness, %
10-fold testing correctness, %
Method
Dataset size (reduced ratio)
mxn SSVM, SSVM; LIBSVM SSVMa-, SSVM1-,
WPBC 72.84 71.02 71.02 80.23 81.93
194 x 34 78.33 T77.78 77.78 79.44  80.00
Tonosphere 87.03 88.58 85.49 84.42 88.74
351 x 34 92.35 93.24 92.94 92.06 93.24
BUPA 73.05 72.80 72.38 71.03 72.48
345 x 6 72.06 72.06 72.65 72.65 73.82
Pima Indians 69.93 72.30 72.47  73.71 72.88
768 x 8 75.00 76.71 76.84  77.89 77.24
Cleveland 79.25 80.67 80.04 78.50  80.79
296 x 13 84.83 84.83 84.14 84.83 85.17
WDBC 87.80 88.79 88.69 89.24 89.55
569 x 30 97.32 97.68 97.32 97.32 97.14
Face (r=0.01) 91.33 90.89 89.06 90.49 90.20
6977 x 361 93.39 93.74 93.29 93.97  94.90
Image (r=0.01) 82.02 81.99 81.30 82.71 84.25
2310 x 18 89.65 89.91 89.26 90.52  91.95
Singleton (r=0.01) 73.61 76.12 74.21 74.10 77.82
3175 x 60 78.45 80.89 78.45 78.58 82.59
Waveform (r=0.01) 83.19 83.36 83.21  83.67 83.61
5000 x 21 90.84 90.86 91.14 91.18 91.20

(b) The results on the data problems with 10% outlier pollution and the
best values are emphasized in boldface. The outlier ratio parameters of
SSVMs-, and SSVM;_, are set to 10%.



